The influence of a prolonged meteorological drought on catchment water storage capacity: a hydrological-model perspective

0
5


Adams, H. D., Luce, C. H., Breshears, D. D., Allen, C. D., Weiler, M.,
Hale, V. C., Smith, A. M. S., and Huxman, T. E.: Ecohydrological
consequences of drought- and infestation- triggered tree die-off: insights
and hypotheses, Ecohydrology, 5, 145–159, https://doi.org/10.1002/eco.233, 2012. 

Cahill, N., Rahmstorf, S., and Parnell, A. C.: Change points of global
temperature, Environ. Res. Lett., 10, 084002, https://doi.org/10.1088/1748-9326/10/8/084002,
2015. 


Carlin, B. P., Gelfand, A. E., and Smith, A. F. M.: Hierarchical
Bayesian-Analysis of Changepoint Problems, J. R. Stat. Soc. Ser. C-Appl.
Stat., 41, 389–405, 1992. 

Chiew, F. H. S., Young, W. J., Cai, W., and Teng, J.: Current drought and
future hydroclimate projections in southeast Australia and implications for
water resources management, Stoch. Environ. Res. Risk Assess., 25, 601–612,
https://doi.org/10.1007/s00477-010-0424-x, 2011. 

Dai, A.: Increasing drought under global warming in observations and models,
Nat. Clim. Change, 3, 52–58, https://doi.org/10.1038/nclimate1633, 2012. 

Dai, A. G.: Drought under global warming: a review, Wiley Interdisciplinary
Reviews-Climate Change, 2, 45–65, https://doi.org/10.1002/wcc.81, 2011. 

Demirel, M. C., Booij, M. J., and Hoekstra, A. Y.: Effect of different
uncertainty sources on the skill of 10 day ensemble low flow forecasts for
two hydrological models, Water Resour. Res., 49, 4035–4053, https://doi.org/10.1002/wrcr.20294, 2013. 

Deng, C., Liu, P., Guo, S. L., Li, Z. J., and Wang, D. B.: Identification of
hydrological model parameter variation using ensemble Kalman filter, Hydrol.
Earth Syst. Sci., 20, 4949–4961, https://doi.org/10.5194/hess-20-4949-2016, 2016. 

Descroix, L., Mahe, G., Lebel, T., Favreau, G., Galle, S., Gautier, E.,
Olivry, J. C., Albergel, J., Amogu, O., Cappelaere, B., Dessouassi, R.,
Diedhiou, A., Le Breton, E., Mamadou, I., and Sighomnou, D.: Spatio-temporal
variability of hydrological regimes around the boundaries between Sahelian
and Sudanian areas of West Africa: A synthesis, J. Hydrol., 375, 90–102, https://doi.org/10.1016/j.jhydrol.2008.12.012, 2009. 

Fensham, R. J., Fairfax, R. J., and Ward, D. P.: Drought-induced tree death
in savanna, Glob. Change Biol., 15, 380–387, https://doi.org/10.1111/j.1365-2486.2008.01718.x, 2009. 

Ferraz, S. F. D., Vettorazzi, C. A., and Theobald, D. M.: Using indicators
of deforestation and land-use dynamics to support conservation strategies: A
case study of central Rondonia, Brazil, For. Ecol. Manage., 257, 1586–1595, https://doi.org/10.1016/j.foreco.2009.01.013, 2009. 


Fischer, G., Nachtergaele., F., Prieler., S., Velthuizen, H. T. v.,
Verelst., L., and D. Wiberg: Global Agro-ecological Zones Assessment for
Agriculture (GAEZ 2008), edited by: IIASA, Laxenburg, Austria, FAO,
Rome, Italy, 2008. 


Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., and Rubin, D.:
Bayesian Data Analysis, third ed., CRC Press, London, 2013. 

Grayson, R. B., Western, A. W., Chiew, F. H. S., and Bloschl, G.: Preferred
states in spatial soil moisture patterns: Local and nonlocal controls, Water
Resour. Res., 33, 2897–2908, https://doi.org/10.1029/97wr02174, 1997. 


Hansen, M., DeFries, R., Townshend, J. R. G., and Sohlberg, R.: Global land
cover classification at 1 km resolution using a decision tree classifier,
Int. J. Remote Sens., 21, 1331–1365, 2000. 

Haslinger, K., Koffler, D., Schoner, W., and Laaha, G.: Exploring the link
between meteorological drought and streamflow: Effects of climate-catchment
interaction, Water Resour. Res., 50, 2468–2487, https://doi.org/10.1002/2013wr015051, 2014. 

Huang, S. Z., Huang, Q., Chang, J. X., Leng, G. Y., and Xing, L.: The
response of agricultural drought to meteorological drought and the
influencing factors: A case study in the Wei River Basin, China, Agric.
Water Manage., 159, 45–54, https://doi.org/10.1016/j.agwat.2015.05.023, 2015. 

Huang, S. Z., Li, P., Huang, Q., Leng, G. Y., Hou, B. B., and Ma, L.: The
propagation from meteorological to hydrological drought and its potential
influence factors, J. Hydrol., 547, 184–195, https://doi.org/10.1016/j.jhydrol.2017.01.041,
2017. 

Leblanc, M. J., Tregoning, P., Ramillien, G., Tweed, S. O., and Fakes, A.:
Basin-scale, integrated observations of the early 21st century multiyear
drought in southeast Australia, Water Resour. Res., 45, W04408, https://doi.org/10.1029/2008wr007333, 2009. 

Li, Q. F., He, P. F., He, Y. C., Han, X. Y., Zeng, T. S., Lu, G. B., and
Wang, H. J.: Investigation to the relation between meteorological drought
and hydrological drought in the upper Shaying River Basin using wavelet
analysis, Atmos. Res., 27, 138–145, https://doi.org/10.1016/j.atmosres.2019.104743, 2020. 

Lopez-Moreno, J. I., Vicente-Serrano, S. M., Zabalza, J., Begueria, S.,
Lorenzo-Lacruz, J., Azorin-Molina, C., and Moran-Tejeda, E.: Hydrological
response to climate variability at different time scales: A study in the
Ebro basin, J. Hydrol., 477, 175–188, https://doi.org/10.1016/j.jhydrol.2012.11.028, 2013. 

Lorenzo-Lacruz, J., Morán-Tejeda, E., Vicente-Serrano, S. M., and López-Moreno, J. I.: Streamflow droughts in the Iberian Peninsula between 1945 and 2005: spatial and temporal patterns, Hydrol. Earth Syst. Sci., 17, 119–134, https://doi.org/10.5194/hess-17-119-2013, 2013. 


Lyne, V. and Hollick, M.: Stochastic Time-Variable Rainfall-Runoff
Modeling, Institute of Engineers Australia National Conference, Australia, January, 1979. 

McNamara, J. P., Tetzlaff, D., Bishop, K., Soulsby, C., Seyfried, M.,
Peters, N. E., Aulenbach, B. T., and Hooper, R.: Storage as a Metric of
Catchment Comparison, Hydrol. Process., 25, 3364–3371, https://doi.org/10.1002/hyp.8113,
2011. 

Mishra, A. K. and Singh, V. P.: A review of drought concepts, J. Hydrol.,
391, 204–216, https://doi.org/10.1016/j.jhydrol.2010.07.012, 2010. 

Pan, Z., Liu, P., Gao, S., Cheng, L., Chen, J., and Zhang, X.: Reducing the
uncertainty of time-varying hydrological model parameters using spatial
coherence within a hierarchical Bayesian framework, J. Hydrol., 577, 123927, https://doi.org/10.1016/j.jhydrol.2019.123927, 2019a. 

Pan, Z., Liu, P., Gao, S., Xia, J., Chen, J., and Cheng, L.: Improving hydrological projection performance under contrasting climatic conditions using spatial coherence through a hierarchical Bayesian regression framework, Hydrol. Earth Syst. Sci., 23, 3405–3421, https://doi.org/10.5194/hess-23-3405-2019, 2019b. 

Perrin, C., Michel, C., and Andreassian, V.: Improvement of a parsimonious
model for streamflow simulation, J. Hydrol., 279, 275–289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003. 

Petrone, K. C., Hughes, J. D., Van Niel, T. G., and Silberstein, R. P.:
Streamflow decline in southwestern Australia, 1950–2008, Geophys. Res.
Lett., 37, L11401, https://doi.org/10.1029/2010gl043102, 2010. 

Saft, M., Western, A. W., Zhang, L., Peel, M. C., and Potter, N. J.: The
influence of multiyear drought on the annual rainfall-runoff relationship:
An Australian perspective, Water Resour. Res., 51, 2444–2463, https://doi.org/10.1002/2014wr015348, 2015. 

Schindler, D. E. and Hilborn, R.: Prediction, precaution, and policy under
global change, Science, 347, 953–954, https://doi.org/10.1126/science.1261824, 2015. 

Staudinger, M., Stoelzle, M., Seeger, S., Seibert, J., Weiler, M., and
Stahl, K.: Catchment water storage variation with elevation, Hydrol.
Process., 31, 2000–2015, https://doi.org/10.1002/hyp.11158, 2017. 

Thiemann, M., Trosset, M., Gupta, H., and Sorooshian, S.: Bayesian recursive
parameter estimation for hydrologic models, Water Resour. Res., 37,
2521–2535, https://doi.org/10.1029/2000wr900405, 2001. 

Van Lanen, H. A. J., Wanders, N., Tallaksen, L. M., and Van Loon, A. F.: Hydrological drought across the world: impact of climate and physical catchment structure, Hydrol. Earth Syst. Sci., 17, 1715–1732, https://doi.org/10.5194/hess-17-1715-2013, 2013. 

Van Loon, A. F., Ploum, S. W., Parajka, J., Fleig, A. K., Garnier, E., Laaha, G., and Van Lanen, H. A. J.: Hydrological drought types in cold climates: quantitative analysis of causing factors and qualitative survey of impacts, Hydrol. Earth Syst. Sci., 19, 1993–2016, https://doi.org/10.5194/hess-19-1993-2015, 2015. 

Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian, S.: A Shuffled
Complex Evolution Metropolis algorithm for optimization and uncertainty
assessment of hydrologic model parameters, Water Resour. Res., 39, 1201, https://doi.org/10.1029/2002wr001642, 2003. 

Westra, S., Thyer, M., Leonard, M., Kavetski, D., and Lambert, M.: A
strategy for diagnosing and interpreting hydrological model nonstationarity,
Water Resour. Res., 50, 5090–5113, https://doi.org/10.1002/2013wr014719, 2014. 

Wong, G., van Lanen, H. A. J., and Torfs, P.: Probabilistic analysis of
hydrological drought characteristics using meteorological drought, Hydrol.
Sci. J., 58, 253–270, https://doi.org/10.1080/02626667.2012.753147, 2013. 

Wu, J. F., Chen, X. W., Yao, H. X., Gao, L., Chen, Y., and Liu, M. B.:
Non-linear relationship of hydrological drought responding to meteorological
drought and impact of a large reservoir, J. Hydrol., 551, 495–507, https://doi.org/10.1016/j.jhydrol.2017.06.029, 2017. 

Wu, Z. Y., Mao, Y., Li, X. Y., Lu, G. H., Lin, Q. X., and Xu, H. T.:
Exploring spatiotemporal relationships among meteorological, agricultural,
and hydrological droughts in Southwest China, Stoch. Environ. Res. Risk
Assess., 30, 1033–1044, https://doi.org/10.1007/s00477-015-1080-y, 2016. 


Yan, X. L., Zhang, J. Y., Wang, G. Q., Bao, Z. X., Liu, C. S., and Xuan, Y.
Q.: Application of GR4J Rainfall-runoff Model to Typical Catchments in the
Yellow River Basin, Proceedings of the 5th International Yellow River Forum
on Ensuring Water Right of the River’s Demand and Healthy River Basin
Maintenance, Vol. V, Yellow River Conservancy Press, Zhengzhou, 191–198,
2015. 


Zhang, Y. Q., Viney, N., Frost, A., and Oke, A.: Collation of australian modeller’s streamflow dataset for 780 unregulated australian catchments, CSIRO: Water for a healthy country national research
flagship, 115 pp., Australia, 2013. 

Zhao, M. and Running, S. W.: Drought-induced reduction in global
terrestrial net primary production from 2000 through 2009, Science, 329,
940–943, https://doi.org/10.1126/science.1192666, 2010. 

Zhao, M. L., Huang, S. Z., Huang, Q., Wang, H., Leng, G. Y., and Xie, Y. Y.:
Assessing socio-economic drought evolution characteristics and their
possible meteorological driving force, Geomat. Nat. Hazards Risk, 10,
1084–1101, https://doi.org/10.1080/19475705.2018.1564706, 2019. 



Source link