Adaptive clustering: reducing the computational costs of distributed (hydrological) modelling by exploiting time-variable similarity among model elements

0
6


Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’Connell, P. E., and Rasmussen, J.: An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a
physically-based, distributed modelling system, J. Hydrol., 87, 45–59, https://doi.org/10.1016/0022-1694(86)90114-9, 1986. 

Administration de la gestion de l’eau (AGE): https://www.inondations.lu/, last access: 7 September 2020. 

Administration des services techniques de l’agriculture (ASTA): http://www.agrimeteo.lu/, last access: 7 September 2020. 

Aydogdu, A., Carrassi, A., Guider, C. T., Jones, C., and Rampal, P.: Data
assimilation using adaptive, non-conservative, moving mesh models, Nonlin.
Processes Geophys., 26, 175–193, https://doi.org/10.5194/npg-26-175-2019, 2019. 

Bacon, D. P., Ahmad, N. N., Boybeyi, Z., Dunn, T. J., Hall, M. S., Lee, P. C. S., Sarma, R. A., Turner, M. D., Waight, K. T., Young, S. H., and Zack, J. W.: A dynamically adapting weather and dispersion model: The Operational
Multiscale Environment Model with Grid Adaptivity (OMEGA), Mon. Weather Rev., 128, 2044–2076, https://doi.org/10.1175/1520-0493(2000)128<2044:Adawad>2.0.Co;2, 2000. 

Berger, M. and Oliger, J.: Adaptive mesh refinement for hyperbolic partial
differential equations, J. Comput. Phys., 53, 484–512, https://doi.org/10.1016/0021-9991(84)90073-1, 1984. 


Bergström, S.: Development and application of a conceptual runoff model
for Scandinavian catchments, SMHI Report RHO 7, SMHI, Norrköping, 134 pp., 1976. 

Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone
d’appel variable de l’hydrologie du bassin versant, Hydrol. Sci. Bull., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. 

Binley, A., Beven, K., and Elgy, J.: A physically based model of heterogeneous hillslopes: 2. Effective hydraulic conductivities, Water Resour. Res., 25, 1227–1233, https://doi.org/10.1029/WR025i006p01227, 1989. 

Booij, M.: Determination and integration of appropriate spatial scales for
river basin modelling, Hydrol. Process., 17, 2581–2598, https://doi.org/10.1002/hyp.1268, 2003. 

Brunner, P. and Simmons, C. T.: HydroGeoSphere: A Fully Integrated,
Physically Based Hydrological Model, Groundwater, 50, 170–176, https://doi.org/10.1111/j.1745-6584.2011.00882.x, 2011. 

Clark, M. P., Bierkens, M. F. P., Samaniego, L., Woods, R. A., Uijlenhoet, R., Bennett, K. E., Pauwels, V. R. N., Cai, X., Wood, A. W., and
Peters-Lidard, C. D.: The evolution of process-based hydrologic models:
historical challenges and the collective quest for physical realism, Hydrol.
Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, 2017. 


Cover, T. M. and Thomas, J. A.: Elements of information theory, John Wiley & Sons, New York, 1991. 

Davison, J. H., Hwang, H.-T., Sudicky, E. A., Mallia, D. V., and Lin, J. C.:
Full Coupling Between the Atmosphere, Surface, and Subsurface for Integrated
Hydrologic Simulation, J. Adv. Model. Earth Syst., 10, 43–53, https://doi.org/10.1002/2017ms001052, 2018. 

Dehotin, J. and Braud, I.: Which spatial discretization for distributed
hydrological models? Proposition of a methodology and illustration for medium to large-scale catchments, Hydrol. Earth Syst. Sci., 12, 769–796,
https://doi.org/10.5194/hess-12-769-2008, 2008. 

Dunger, V.: Entwicklung und Anwendung des Modells BOWAHALD zur Quantifizierung des Wasserhaushalts oberflächengesicherter Deponien und
Halden. Habilitationsschrift an der Fakultät für Geowissenschaften,
Geotechnik und Bergbau der TU Bergakademie Freiberg, Freiberg, https://doi.org/10.23689/fidgeo-668, 2006. 


DVWK: Ermittlung der Verdunstung von Land- und Wasserflächen,
DVWK-Merkblätter 238, Deutscher Verband für Wasserwirtschaft und Kulturbau e.V. (DVWK), Bonn, p. 135, 1996. 

Ehret, U.: KIT-HYD/SHM-Attert-Adaptive-Clustering: Release 1 (Version v1.0), Zenodo, https://doi.org/10.5281/zenodo.4017427, 2020. 

European Environment Agency (EEA): Corine Land Cover (CLC) 2012, Version 2020_20u1, available at: http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012/view, last access: 7 September 2020. 

Fenicia, F., Kavetski, D., Savenije, H. H. G., Clark, M. P., Schoups, G.,
Pfister, L., and Freer, J.: Catchment properties, function, and conceptual
model representation: is there a correspondence?, Hydrol. Process., 28,
2451–2467, https://doi.org/10.1002/hyp.9726, 2014. 

Fenicia, F., Kavetski, D., Savenije, H. H. G., and Pfister, L.: From spatially variable streamflow to distributed hydrological models: Analysis
of key modeling decisions, Water Resour. Res., 52, 954–989,
https://doi.org/10.1002/2015wr017398, 2016. 


Flügel, W. A.: Delineating hydrological response units by geographical
information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany, Hydrol. Process., 9, 423–436, 1995. 


Flügel, W.-A.: Hydrological Response Units  HRUs) as modeling entities for hydrological river basin simulation and their methodological potential
for modeling complex environmental process systems, Erde, 127, 42–62, 1996. 

Gharari, S., Clark, M. P., Mizukami, N., Knoben, W. J. M., Wong, J. S., and Pietroniro, A.: Flexible vector-based spatial configurations in land models, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-111, in review, 2020. 

Hundecha, Y. and Bardossy, A.: Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model, J. Hydrol., 292, 281–295, https://doi.org/10.1016/j.jhydrol.2004.01.002, 2004. 


Juilleret, J., Iffly, J.-F., Hoffmann, L., and Hissler, C.: The potential of
soil survey as a tool for surface geological mapping: a case study in a
hydrological experimental catchment (Huewelerbach, Grand-Duchy of
Luxembourg), Geologica Belgica [En ligne], 15, 36–41, 2012. 

Kirchner, J. W.: Getting the right answers for the right reasons: Linking
measurements, analyses, and models to advance the science of hydrology, Water Resources Research, 42, W03S04, https://doi.org/10.1029/2005wr004362, 2006. 

Kollet, S. J., Maxwell, R. M., Woodward, C. S., Smith, S., Vanderborght, J.,
Vereecken, H., and Simmer, C.: Proof of concept of regional scale hydrologic
simulations at hydrologic resolution utilizing massively parallel computer
resources, Water Resour. Res., 46, W04201, https://doi.org/10.1029/2009wr008730, 2010. 


Kouwen, N., Soulis, E. D., Pietroniro, A., Donald, J., and Harrington, R. A.:
Grouped response units for distributed hydrologic modeling, J. Water Resour. Plan. Manage., 119, 289–305, 1993. 


Kuhn, H. W.: The Hungarian method for the assignment problem, Naval Res. Logist. Quart., 2, 83–97, 1955. 

Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C.,
Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val Martin, M., and Zeng, X.: The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty, J. Adv. Model. Earth Syst., 11, 4245–4287, https://doi.org/10.1029/2018MS001583, 2019. 

Liu, H., Tolson, B. A., Craig, J. R., and Shafii, M.: A priori discretization error metrics for distributed hydrologic modeling applications, J. Hydrol., 543, 873–891, https://doi.org/10.1016/j.jhydrol.2016.11.008, 2016. 

Loritz, R., Gupta, H., Jackisch, C., Westhoff, M., Kleidon, A., Ehret, U., and Zehe, E.: On the dynamic nature of hydrological similarity, Hydrol. Earth Syst. Sci., 22, 3663–3684, https://doi.org/10.5194/hess-22-3663-2018, 2018. 

LSA SAF: The EUMETSAT-based LSA SAF evapotranspiration products, available at: http://landsaf.ipma.pt, last access: 7 September 2020. 

Luxembourg Institute of Science and Technology (LIST): https://www.list.lu/, last access: 7 September 2020. 

Melsen, L., Teuling, A., Torfs, P., Zappa, M., Mizukami, N., Clark, M., and
Uijlenhoet, R.: Representation of spatial and temporal variability in large-domain hydrological models: case study for a mesoscale pre-Alpine
basin, Hydrol. Earth Syst. Sci., 20, 2207–2226, https://doi.org/10.5194/hess-20-2207-2016, 2016. 

Miller, C. T., Abhishek, C., and Farthing, M. W.: A spatially and temporally
adaptive solution of Richards’ equation, Adv. Water Resour., 29, 525–545, https://doi.org/10.1016/j.advwatres.2005.06.008, 2006. 

Minkoff, S. E. and Kridler, N. M.: A comparison of adaptive time stepping methods for coupled flow and deformation modeling, Appl. Math. Model., 30,
993–1009, https://doi.org/10.1016/j.apm.2005.08.002, 2006. 


Munkres, J.: Algorithms for the Assignment and Transportation Problems, J. Soc. Indust. Appl. Math., 5, 32–38, 1957. 


Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part i – a discussion of principles, J. Hydrol., 10, 282–290, 1970. 

Neuper, M. and Ehret, U.: Quantitative precipitation estimation with weather radar using a data- and information-based approach, Hydrol. Earth Syst. Sci., 23, 3711–3733, https://doi.org/10.5194/hess-23-3711-2019, 2019. 

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale
measurements, J. Geophys. Res.-Atmos., 116, D12109, https://doi.org/10.1029/2010jd015139, 2011. 

Pain, C. C., Piggott, M. D., Goddard, A. J. H., Fang, F., Gorman, G. J.,
Marshall, D. P., Eaton, M. D., Power, P. W., and de Oliveira, C. R. E.:
Three-dimensional unstructured mesh ocean modelling, Ocean Model., 10, 5–33,
https://doi.org/10.1016/j.ocemod.2004.07.005, 2005. 


Penman, H. L.: Evaporation: An introductory survey, Neth. J. Agric. Sci., 1, 151–153, 1956. 

Pettway, J. S., Schmidt, J. H., and Stagg, A. K.: Adaptive meshing in a mixed regime hydrologic simulation model, Comput. Geosci., 14, 665–674, https://doi.org/10.1007/s10596-010-9179-1, 2010. 

Pfister, L., Humbert, J., and Hoffmann, L.: Recent trends in rainfall-runoff
characteristics in the Alzette river basin, Luxembourg, Climatic Change, 45,
323–337, https://doi.org/10.1023/A:1005567808533, 2000. 


Pfister, L., Wagner, C., Vansuypeene, E., Drogue, G., and Hoffmann, L.: Atlas climatique du grand-duché de Luxembourg, Luxembourg: Musée National d’Histoire Naturelle, Société des naturalistes luxembourgeois, Centre de Recherche Public, edited by: Ries, C. and Lippmann, G., Administration des Services Techniques de l’Agriculture, Luxembourg, 2005. 

Pfister, L., McDonnell, J. J., Wrede, S., Hlúbiková, D., Matgen, P.,
Fenicia, F., Ector, L., and Hoffmann, L.: The rivers are alive: on the potential for diatoms as a tracer of water source and hydrological connectivity, Hydrol. Process., 23, 2841–2845, https://doi.org/10.1002/hyp.7426, 2009.

Reggiani, P., Sivapalan, M., and Majid Hassanizadeh, S.: A unifying framework for watershed thermodynamics: balance equations for mass, momentum, energy and entropy, and the second law of thermodynamics, Adv. Water Resour., 22, 367–398, https://doi.org/10.1016/S0309-1708(98)00012-8, 1998. 

Service géologique de l’Etat: http://www.geologie.lu/geolwiki/index.php/Cartes_g%C3%A9ologiques, last access: 7 September 2020. 

Schulz, K., Seppelt, R., Zehe, E., Vogel, H. J., and Attinger, S.: Importance of spatial structures in advancing hydrological sciences, Water Resour. Res., 42, 4, https://doi.org/10.1029/2005wr004301, 2006. 


Šimunek, J., Šejna, M., and Van Genuchten, M. T.: Hydrus 2-D software package for simulating the two-dimensional movement of water, heat, and multiple solutes in variably saturated media, US Salinity Laboratory, Agricultural Research Service – ARS, US Department of Agriculture – USDA, Riverside, 1999. 


Singh, V. P.: Entropy Theory and its Application in Environmental and Water
Engineering, John Wiley & Sons, Ltd, Chichester, Sussex, UK, ISBN 978-1-119-97656-1, 2013. 


Teyssier, R.: Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES, Astron. Astrophys., 385, 337–364, 2002. 

Trigo, I. F., Dacamara, C. C., Viterbo, P., Roujean, J.-L., Olesen, F.,
Barroso, C., Camacho-de-Coca, F., Carrer, D., Freitas, S. C., García-Haro, J., Geiger, B., Gellens-Meulenberghs, F., Ghilain, N.,
Meliá, J., Pessanha, L., Siljamo, N., and Arboleda, A.: The satellite
application facility for land surface analysis, Int. J. Remote Sens., 32, 2725–2744, https://doi.org/10.1080/01431161003743199, 2011. 


Wood, E. F., Sivapalan, M., Beven, K., and Band, L.: Effects of spatial
variability and scale with implications to hydrologic modeling, J. Hydrol., 102, 29–47, 1988. 

Zehe, E. and Sivapalan, M.: Threshold behaviour in hydrological systems as
(human) geo-ecosystems: manifestations, controls, implications, Hydrol. Earth Syst. Sci., 13, 1273–1297, https://doi.org/10.5194/hess-13-1273-2009, 2009. 


Zehe, E., Maurer, T., Ihringer, J., and Plate, E.: Modeling water flow and
mass transport in a loess catchment, Phys. Chem. Earth Pt. B, 26, 487–507, 2001. 

Zehe, E., Ehret, U., Pfister, L., Blume, T., Schröder, B., Westhoff, M.,
Jackisch, C., Schymanski, S. J., Weiler, M., Schulz, K., Allroggen, N.,
Tronicke, J., Dietrich, P., Scherer, U., Eccard, J., Wulfmeyer, V., and
Kleidon, A.: HESS Opinions: From response units to functional units: a thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments, Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, 2014. 



Source link